Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 926
Filtrar
1.
J Diabetes Res ; 2024: 5511454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736904

RESUMO

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Assuntos
Adipogenia , Tecido Adiposo Marrom , Tecido Adiposo Branco , Dieta Hiperlipídica , Lipase , Camundongos Endogâmicos C57BL , Animais , Camundongos , Masculino , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Lipase/metabolismo , Lipase/genética , Obesidade/metabolismo , Lipólise , Proteína Desacopladora 1/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Adipócitos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Lipogênese , Aciltransferases
2.
Nat Cell Biol ; 26(4): 552-566, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561547

RESUMO

Metabolic crosstalk of the major nutrients glucose, amino acids and fatty acids (FAs) ensures systemic metabolic homeostasis. The coordination between the supply of glucose and FAs to meet various physiological demands is especially important as improper nutrient levels lead to metabolic disorders, such as diabetes and metabolic dysfunction-associated steatohepatitis (MASH). In response to the oscillations in blood glucose levels, lipolysis is thought to be mainly regulated hormonally to control FA liberation from lipid droplets by insulin, catecholamine and glucagon. However, whether general cell-intrinsic mechanisms exist to directly modulate lipolysis via glucose sensing remains largely unknown. Here we report the identification of such an intrinsic mechanism, which involves Golgi PtdIns4P-mediated regulation of adipose triglyceride lipase (ATGL)-driven lipolysis via intracellular glucose sensing. Mechanistically, depletion of intracellular glucose results in lower Golgi PtdIns4P levels, and thus reduced assembly of the E3 ligase complex CUL7FBXW8 in the Golgi apparatus. Decreased levels of the E3 ligase complex lead to reduced polyubiquitylation of ATGL in the Golgi and enhancement of ATGL-driven lipolysis. This cell-intrinsic mechanism regulates both the pool of intracellular FAs and their extracellular release to meet physiological demands during fasting and glucose deprivation. Moreover, genetic and pharmacological manipulation of the Golgi PtdIns4P-CUL7FBXW8-ATGL axis in mouse models of simple hepatic steatosis and MASH, as well as during ex vivo perfusion of a human steatotic liver graft leads to the amelioration of steatosis, suggesting that this pathway might be a promising target for metabolic dysfunction-associated steatotic liver disease and possibly MASH.


Assuntos
Glicemia , Lipólise , Fosfatos de Fosfatidilinositol , Animais , Humanos , Camundongos , Ácidos Graxos/metabolismo , Glucose , Lipase/genética , Lipase/metabolismo , Lipólise/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Nutrients ; 16(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674929

RESUMO

This study aimed to investigate the impact of a common non-synonymous gene variant (C>G, rs738409) in patatin-like phospholipase domain-containing 3 (PNPLA3), leading to the substitution of isoleucine with methionine at position 148 (PNPLA3-I148M), on susceptibility to nonalcoholic fatty liver disease (NAFLD) and explore potential therapeutic nutritional strategies targeting PNPLA3. It contributed to understanding sustainable dietary practices for managing NAFLD, recently referred to as metabolic-dysfunction-associated fatty liver. NAFLD had been diagnosed by ultrasound in a metropolitan hospital-based cohort comprising 58,701 middle-aged and older Korean individuals, identifying 2089 NAFLD patients. The interaction between PNPLA3 and lifestyle factors was investigated. In silico analyses, including virtual screening, molecular docking, and molecular dynamics simulations, were conducted to identify bioactive compounds from foods targeting PNPLA3(I148M). Subsequent cellular experiments involved treating oleic acid (OA)-exposed HepG2 cells with selected bioactive compounds, both in the absence and presence of compound C (AMPK inhibitor), targeting PNPLA3 expression. Carriers of the risk allele PNPLA3_rs738409G showed an increased association with NAFLD risk, particularly with adherence to a plant-based diet, avoidance of a Western-style diet, and smoking. Delphinidin 3-caffeoyl-glucoside, pyranocyanin A, delta-viniferin, kaempferol-7-glucoside, and petunidin 3-rutinoside emerged as potential binders to the active site residues of PNPLA3, exhibiting a reduction in binding energy. These compounds demonstrated a dose-dependent reduction in intracellular triglyceride and lipid peroxide levels in HepG2 cells, while pretreatment with compound C showed the opposite trend. Kaempferol-7-glucoside and petunidin-3-rutinoside showed potential as inhibitors of PNPLA3 expression by enhancing AMPK activity, ultimately reducing intrahepatic lipogenesis. In conclusion, there is potential for plant-based diets and specific bioactive compounds to promote sustainable dietary practices to mitigate NAFLD risk, especially in individuals with genetic predispositions.


Assuntos
Aciltransferases , Estilo de Vida , Lipase , Proteínas de Membrana , Hepatopatia Gordurosa não Alcoólica , Fosfolipases A2 Independentes de Cálcio , Humanos , Hepatopatia Gordurosa não Alcoólica/genética , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lipase/genética , Feminino , Pessoa de Meia-Idade , Células Hep G2 , Predisposição Genética para Doença , Simulação de Acoplamento Molecular , Polimorfismo de Nucleotídeo Único , Dieta Saudável/métodos , Idoso , Compostos Fitoquímicos/farmacologia
4.
Proc Natl Acad Sci U S A ; 121(18): e2318619121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38657050

RESUMO

Nonalcoholic fatty liver disease, recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD), is a progressive metabolic disorder that begins with aberrant triglyceride accumulation in the liver and can lead to cirrhosis and cancer. A common variant in the gene PNPLA3, encoding the protein PNPLA3-I148M, is the strongest known genetic risk factor for MASLD. Despite its discovery 20 y ago, the function of PNPLA3, and now the role of PNPLA3-I148M, remain unclear. In this study, we sought to dissect the biogenesis of PNPLA3 and PNPLA3-I148M and characterize changes induced by endogenous expression of the disease-causing variant. Contrary to bioinformatic predictions and prior studies with overexpressed proteins, we demonstrate here that PNPLA3 and PNPLA3-I148M are not endoplasmic reticulum-resident transmembrane proteins. To identify their intracellular associations, we generated a paired set of isogenic human hepatoma cells expressing PNPLA3 and PNPLA3-I148M at endogenous levels. Both proteins were enriched in lipid droplet, Golgi, and endosomal fractions. Purified PNPLA3 and PNPLA3-I148M proteins associated with phosphoinositides commonly found in these compartments. Despite a similar fractionation pattern as the wild-type variant, PNPLA3-I148M induced morphological changes in the Golgi apparatus, including increased lipid droplet-Golgi contact sites, which were also observed in I148M-expressing primary human patient hepatocytes. In addition to lipid droplet accumulation, PNPLA3-I148M expression caused significant proteomic and transcriptomic changes that resembled all stages of liver disease. Cumulatively, we validate an endogenous human cellular system for investigating PNPLA3-I148M biology and identify the Golgi apparatus as a central hub of PNPLA3-I148M-driven cellular change.


Assuntos
Aciltransferases , Complexo de Golgi , Gotículas Lipídicas , Fosfolipases A2 Independentes de Cálcio , Humanos , Aciltransferases/metabolismo , Complexo de Golgi/metabolismo , Lipase/metabolismo , Lipase/genética , Gotículas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fosfolipases A2 Independentes de Cálcio/metabolismo
5.
Sci Rep ; 14(1): 5682, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453980

RESUMO

Sofosbuvir is one of the crucial drugs used in the treatment of chronic hepatitis C virus (HCV) in adults and children with compensated liver disease, including cirrhosis. It may be used alone or with other drugs. Ribavirin is an antiviral medication used to treat HCV infection. It is not effective when used alone and must be used in combination with other medications, such as sofosbuvir. This study pertains to a comprehensive assessment of the deleterious effects of sofosbuvir (an antiviral drug against chronic HCV) or sofosbuvir combined with ribavirin (an antiviral drug against RNA and DNA viruses) on several biological activities of the body, including hematological, hormonal, biochemical, histological, and immunohistochemical examinations during a long-standing period on male healthy rats. In addition, fertility assessments were performed, including sperm collections and semen parameter investigations. This study was conducted on 21 male rats divided into three equal groups. Group I (control group) received distilled water; group II (sofosbuvir group) received sofosbuvir (4 mg/kg); and group III (sofosbuvir + ribavirin) received sofosbuvir (4 mg/kg) plus ribavirin (30 ml/kg). All groups received the specific drug for six months. Blood and tissue samples were collected for hematological, hormonal, biochemical, histological, and immunohistochemical examinations. In addition, sperm collection and assessments of semen parameters were performed. Results revealed that sofosbuvir causes a highly significant decrease in the mean of most hematological, immunological, hormonal, and biochemical parameters, except for a few numbers of parameters such as neutrophils, monocytes, basophils, cortisol, GOT, and lipase, which exhibit a significant increase. The same occurred in the sofosbuvir + ribavirin group, but at much higher levels, as most hematological, immunological, hormonal, and biochemical parameters exhibit a highly significant decrease except for monocytes, triglyceride, and lipase, which exhibit a significant increase. When compared to the sofosbuvir group alone, the sofosbuvir + ribavirin group demonstrated a highly significant decline in the mean of most hematological, immunological, hormonal, and biochemical parameters except lymphocytes and triglycerides, which exhibit a substantial increase. For the reproductive parameters, both groups exhibit a significant decrease in the total sperm motility percentage. Finally, it can be concluded that sofosbuvir causes acute pancreatitis and combined immunodeficiency. Ribavirin is associated with hormonal deficiency, which indicates the occurrence of hypopituitarism. Moreover, sofosbuvir and ribavirin synergistically affect myelosuppression and cause iron-deficiency anemia. However, sofosbuvir, or its combination with ribavirin, is associated with a reduced risk of hepatocellular carcinoma. Besides, adding ribavirin to be combined with sofosbuvir improved the immunodeficiency caused by sofosbuvir; this confirms that using ribavirin with sofosbuvir reduces the side effects of both alone.


Assuntos
Hepatite C Crônica , Pancreatite , Humanos , Adulto , Criança , Masculino , Animais , Ratos , Antivirais/efeitos adversos , Sofosbuvir/efeitos adversos , Ribavirina/uso terapêutico , Hepatite C Crônica/tratamento farmacológico , Hepacivirus/genética , Doença Aguda , Resultado do Tratamento , Quimioterapia Combinada , Pancreatite/induzido quimicamente , Sêmen , Motilidade dos Espermatozoides , Cirrose Hepática/complicações , Lipase/genética , Genótipo
6.
J Biol Chem ; 300(3): 105743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354786

RESUMO

The lysosome is an acid organelle that contains a variety of hydrolytic enzymes and plays a significant role in intracellular degradation to maintain cellular homeostasis. Genetic variants in lysosome-related genes can lead to severe congenital diseases, such as lysosomal storage diseases. In the present study, we investigated the impact of depleting lysosomal acid lipase A (LIPA), a lysosomal esterase that metabolizes esterified cholesterol or triglyceride, on lysosomal function. Under nutrient-rich conditions, LIPA gene KO (LIPAKO) cells exhibited impaired autophagy, whereas, under starved conditions, they showed normal autophagy. The cause underlying the differential autophagic activity was increased sensitivity of LIPAKO cells to ammonia, which was produced from l-glutamine in the medium. Further investigation revealed that ammonia did not affect upstream signals involved in autophagy induction, autophagosome-lysosome fusion, and hydrolytic enzyme activities in LIPAKO cells. On the other hand, LIPAKO cells showed defective lysosomal acidity upon ammonia loading. Microscopic analyses revealed that lysosomes of LIPAKO cells enlarged, whereas the amount of lysosomal proton pump V-ATPase did not proportionally increase. Since the enlargement of lysosomes in LIPAKO cells was not normalized under starved conditions, this is the primary change that occurred in the LIPAKO cells, and autophagy was affected by impaired lysosomal function under the specific conditions. These findings expand our comprehension of the pathogenesis of Wolman's disease, which is caused by a defect in the LIPA gene, and suggest that conditions, such as hyperlipidemia, may easily disrupt lysosomal functions.


Assuntos
Autofagia , Lipase , Lisossomos , Humanos , Amônia/metabolismo , Autofagia/fisiologia , Lipase/genética , Lipase/metabolismo , Lisossomos/química , Lisossomos/enzimologia , Doença de Wolman/enzimologia , Doença de Wolman/genética , Células HeLa , Concentração de Íons de Hidrogênio , Técnicas de Inativação de Genes
7.
Plant Mol Biol ; 114(1): 4, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227103

RESUMO

Although many important discoveries have been made regarding the jasmonate signaling pathway, how jasmonate biosynthesis is initiated is still a major unanswered question in the field. Previous evidences suggest that jasmonate biosynthesis is limited by the availability of fatty acid precursor, such as ⍺-linolenic acid (⍺-LA). This indicates that the lipase responsible for releasing α-LA in the chloroplast, where early steps of jasmonate biosynthesis take place, is the key initial step in the jasmonate biosynthetic pathway. Nicotiana benthamiana glycerol lipase A1 (NbGLA1) is homologous to N. attenuata GLA1 (NaGLA1) which has been reported to be a major lipase in leaves for jasmonate biosynthesis. NbGLA1 was studied for its potential usefulness in a species that is more common in laboratories. Virus-induced gene silencing of both NbGLA1 and NbGLA2, another homolog, resulted in more than 80% reduction in jasmonic acid (JA) biosynthesis in wounded leaves. Overexpression of NbGLA1 utilizing an inducible vector system failed to increase JA, indicating that transcriptional induction of NbGLA1 is insufficient to trigger JA biosynthesis. However, co-treatment with wounding in addition to NbGLA1 induction increased JA accumulation several fold higher than the gene expression or wounding alone, indicating an enhancement of the enzyme activity by wounding. Domain-deletion of a 126-bp C-terminal region hypothesized to have regulatory roles increased NbGLA1-induced JA level. Together, the data show NbGLA1 to be a major lipase for wound-induced JA biosynthesis in N. benthamiana leaves and demonstrate the use of inducible promoter-driven construct of NbGLA1 in conjunction with its transient expression in N. benthamiana as a useful system to study its protein function.


Assuntos
Lipase , Nicotiana , Oxilipinas , Nicotiana/genética , Lipase/genética , Cloroplastos , Ciclopentanos , Glicerol
8.
Mar Biotechnol (NY) ; 26(1): 169-180, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38224425

RESUMO

The relationship between conjugated linoleic acid (CLA) and lipogenesis has been extensively studied in mammals and some cell lines, but it is relatively rare in fish, and the potential mechanism of action of CLA reducing fat mass remains unclear. The established primary culture model for studying lipogenesis in grass carp (Ctenopharyngodon idella) preadipocytes was used in the present study, and the objective was to explore the effects of CLA on intracellular lipid and TG content, fatty acid composition, and mRNA levels of adipogenesis transcription factors, lipase, and apoptosis genes in grass carp adipocytes in vitro. The results showed that CLA reduced the size of adipocyte and lipid droplet and decreased the content of intracellular lipid and TG, which was accompanied by a significant down-regulation of mRNA abundance in transcriptional regulators including peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer-binding protein (C/EBP) α, sterol regulatory element-binding protein (SREBP) 1c, lipase genes including fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), lipoprotein lipase (LPL). Meanwhile, it decreased the content of saturated fatty acids (SFAs) and n - 6 polyunsaturated fatty acid (n-6 PUFA) and increased the content of monounsaturated fatty acid (MUFA) and n - 3 polyunsaturated fatty acid (n-3 PUFA) in primary grass carp adipocyte. In addition, CLA induced adipocyte apoptosis through downregulated anti-apoptotic gene B-cell CLL/lymphoma 2 (Bcl-2) mRNA level and up-regulated pro-apoptotic genes tumor necrosis factor-α (TNF-α), Bcl-2-associated X protein (Bax), Caspase-3, and Caspase-9 mRNA level in a dose-dependent manner. These findings suggest that CLA can act on grass carp adipocytes through various pathways, including decreasing adipocyte size, altering fatty acid composition, inhibiting adipocyte differentiation, promoting adipocyte apoptosis, and ultimately decreasing lipid accumulation.


Assuntos
Carpas , Ácidos Graxos Ômega-3 , Ácidos Linoleicos Conjugados , Animais , Lipogênese/genética , Ácidos Linoleicos Conjugados/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , Regulação para Cima , Regulação para Baixo , Carpas/genética , Carpas/metabolismo , Adipócitos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Lipase/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
9.
Cancer Res ; 84(5): 703-724, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38038968

RESUMO

Lipid metabolism plays a central role in prostate cancer. To date, the major focus has centered on de novo lipogenesis and lipid uptake in prostate cancer, but inhibitors of these processes have not benefited patients. A better understanding of how cancer cells access lipids once they are created or taken up and stored could uncover more effective strategies to perturb lipid metabolism and treat patients. Here, we identified that expression of adipose triglyceride lipase (ATGL), an enzyme that controls lipid droplet homeostasis and a previously suspected tumor suppressor, correlates with worse overall survival in men with advanced, castration-resistant prostate cancer (CRPC). Molecular, genetic, or pharmacologic inhibition of ATGL impaired human and murine prostate cancer growth in vivo and in cell culture or organoids under conditions mimicking the tumor microenvironment. Mass spectrometry imaging demonstrated that ATGL profoundly regulates lipid metabolism in vivo, remodeling membrane composition. ATGL inhibition induced metabolic plasticity, causing a glycolytic shift that could be exploited therapeutically by cotargeting both metabolic pathways. Patient-derived phosphoproteomics identified ATGL serine 404 as a target of CAMKK2-AMPK signaling in CRPC cells. Mutation of serine 404 did not alter the lipolytic activity of ATGL but did decrease CRPC growth, migration, and invasion, indicating that noncanonical ATGL activity also contributes to disease progression. Unbiased immunoprecipitation/mass spectrometry suggested that mutation of serine 404 not only disrupts existing ATGL protein interactions but also leads to new protein-protein interactions. Together, these data nominate ATGL as a therapeutic target for CRPC and provide insights for future drug development and combination therapies. SIGNIFICANCE: ATGL promotes prostate cancer metabolic plasticity and progression through both lipase-dependent and lipase-independent activity, informing strategies to target ATGL and lipid metabolism for cancer treatment.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Camundongos , Animais , Lipólise/genética , Metabolismo dos Lipídeos , Lipase/genética , Lipase/metabolismo , Serina/metabolismo , Microambiente Tumoral , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina
10.
BMC Genomics ; 24(1): 795, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129780

RESUMO

BACKGROUND: GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS: A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS: Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.


Assuntos
Esterases , Lipase , Esterases/genética , Esterases/metabolismo , Lipase/genética , Lipase/metabolismo , Gossypium/metabolismo , Genoma de Planta , Duplicação Gênica , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Hepatol Commun ; 7(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37782459

RESUMO

BACKGROUND: NAFLD caused by abnormalities in hepatic lipid metabolism is associated with an increased risk of developing HCC. The molecular mechanisms underlying the progression of NAFLD-related HCC are not fully understood. We investigated the molecular mechanism and role of KDM6B downregulation in NAFLD-related HCC after the KDM6B gene was identified using microarray analysis as commonly downregulated in mouse NAFLD-related HCC and human nonhepatitis B and nonhepatitis C viral-HCC. METHODS: The 5-hydroxymethylcytosine levels of KDM6B in HCC cells were determined using glycosylated hydroxymethyl-sensitive PCR. Microarray and chromatin immunoprecipitation analyses using KDM6B-knockout (KO) cells were used to identify KDM6B target genes. Lipotoxicity was assessed using a palmitate-treated cell proliferation assay. Immunohistochemistry was used to evaluate KDM6B expression in human HCC tissues. RESULTS: KDM6B expression levels in HCC cells correlated with the 5-hydroxymethylcytosine levels in the KDM6B gene body region. Gene set enrichment analysis revealed that the lipid metabolism pathway was suppressed in KDM6B-KO cells. KDM6B-KO cells acquired resistance to lipotoxicity (p < 0.01) and downregulated the expression of G0S2, an adipose triglyceride lipase/patatin like phospholipase domain containing 2 (ATGL/PNPLA2) inhibitor, through increased histone H3 lysine-27 trimethylation levels. G0S2 knockdown in KDM6B-expressed HCC cells conferred lipotoxicity resistance, whereas ATGL/PNPLA2 inhibition in the KDM6B-KO cells reduced these effects. Immunohistochemistry revealed that KDM6B expression was decreased in human NAFLD-related HCC tissues (p < 0.001), which was significantly associated with decreased G0S2 expression (p = 0.032). CONCLUSIONS: KDM6B-disrupted HCC acquires resistance to lipotoxicity via ATGL/PNPLA2 activation caused by epigenetic downregulation of G0S2 expression. Reduced KDM6B and G0S2 expression levels are common in NAFLD-related HCC. Targeting the KDM6B-G0S2-ATGL/PNPLA2 pathway may be a useful therapeutic strategy for NAFLD-related HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Lipase/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética
12.
J Lipid Res ; 64(11): 100457, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37832604

RESUMO

Intracellular lipolysis-the enzymatic breakdown of lipid droplet-associated triacylglycerol (TAG)-depends on the cooperative action of several hydrolytic enzymes and regulatory proteins, together designated as lipolysome. Adipose triglyceride lipase (ATGL) acts as a major cellular TAG hydrolase and core effector of the lipolysome in many peripheral tissues. Neurons initiate lipolysis independently of ATGL via DDHD domain-containing 2 (DDHD2), a multifunctional lipid hydrolase whose dysfunction causes neuronal TAG deposition and hereditary spastic paraplegia. Whether and how DDHD2 cooperates with other lipolytic enzymes is currently unknown. In this study, we further investigated the enzymatic properties and functions of DDHD2 in neuroblastoma cells and primary neurons. We found that DDHD2 hydrolyzes multiple acylglycerols in vitro and substantially contributes to neutral lipid hydrolase activities of neuroblastoma cells and brain tissue. Substrate promiscuity of DDHD2 allowed its engagement at different steps of the lipolytic cascade: In neuroblastoma cells, DDHD2 functioned exclusively downstream of ATGL in the hydrolysis of sn-1,3-diacylglycerol (DAG) isomers but was dispensable for TAG hydrolysis and lipid droplet homeostasis. In primary cortical neurons, DDHD2 exhibited lipolytic control over both, DAG and TAG, and complemented ATGL-dependent TAG hydrolysis. We conclude that neuronal cells use noncanonical configurations of the lipolysome and engage DDHD2 as dual TAG/DAG hydrolase in cooperation with ATGL.


Assuntos
Lipólise , Humanos , Lipase/genética , Lipase/metabolismo , Neurônios/metabolismo , Paraplegia , Fosfolipases/metabolismo , Triglicerídeos/metabolismo
13.
Funct Integr Genomics ; 23(4): 313, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37776372

RESUMO

Both circular RNA eukaryotic translation initiation factor 6 (circEIF6) and microRNA (miR)-138-5p participate in thyroid cancer (TC) progression. Nevertheless, the relationship between them remains under-explored. Hence, this research ascertained the mechanism of circEIF6 in TC via miR-138-5p. After TC tissues and cells were harvested, circEIF6, miR-138-5p, and lipase H (LIPH) levels were assessed. The binding relationships among circEIF6, miR-138-5p, and LIPH were analyzed. The impacts of circEIF6, miR-138-5p, and LIPH on the invasive and proliferative abilities of TPC-1 cells were examined by Transwell and EdU assays. Tumor xenograft in nude mice was established for in vivo validation of the impact of circEIF6. CircEIF6 expression was high in TC cells and tissues. Additionally, miR-138-5p was poor and LIPH level was high in TC tissues. Mechanistically, circEIF6 competitively bound to miR-138-5p to elevate LIPH via a competitive endogenous RNA mechanism. Silencing of circEIF6 reduced TPC-1 cell proliferative and invasive properties, which was annulled by further inhibiting miR-138-5p or overexpressing LIPH. Likewise, circEIF6 silencing repressed the growth of transplanted tumors, augmented miR-138-5p expression, and diminished LIPH expression in nude mice. Conclusively, circEIF6 silencing reduced LIPH level by competitive binding to miR-138-5p, thus subduing the proliferation and invasion of TPC-1 cells.


Assuntos
MicroRNAs , RNA Circular , Neoplasias da Glândula Tireoide , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Lipase/genética , Lipase/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , RNA Circular/genética , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
14.
Cancer Lett ; 569: 216306, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442366

RESUMO

Bidirectional interactions between cancer cells and their microenvironment govern tumor progression. Among the stromal cells in this microenvironment, adipocytes have been reported to upregulate cancer cell migration and invasion by producing fatty acids. Conversely, cancer cells alter adipocyte phenotype notably via increased lipolysis. We aimed to identify the mechanisms through which cancer cells trigger adipocyte lipolysis and evaluate the functional consequences on cancer progression. Here, we show that cancer cell-induced acidification of the extracellular medium strongly promotes preadipocyte lipolysis through a mechanism that does not involve lipophagy but requires adipose triglyceride lipase (ATGL) activity. This increased lipolysis is triggered mainly by attenuation of the G0/G1 switch gene 2 (G0S2)-induced inhibition of ATGL. G0S2-mediated regulation in preadipocytes affects their communication with breast cancer cells, modifying the phenotype of the cancer cells and increasing their resistance to chemotherapeutic agents in vitro. Furthermore, we demonstrate that the adipocyte-specific overexpression of G0S2 impairs mammary tumor growth and lung metastasis formation in vivo. Our results highlight the importance of acidosis in cancer cell-adipocyte crosstalk and identify G0S2 as the main regulator of cancer-induced lipolysis, regulating tumor establishment and spreading.


Assuntos
Proteínas de Ciclo Celular , Neoplasias , Proteínas de Ciclo Celular/metabolismo , Lipase/genética , Lipase/metabolismo , Adipócitos/metabolismo , Lipólise , Fenômenos Fisiológicos Celulares
15.
J Gynecol Oncol ; 34(6): e71, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37417299

RESUMO

OBJECTIVE: More than 75% of ovarian cancer patients are diagnosed at advanced stages and die of tumor cell metastasis. This study aimed to identify new epigenetic and transcriptomic alterations associated with ovarian cancer metastasis. METHODS: Two cell sublines with low- and high-metastasis potentials were derived from the ovarian cancer cell line A2780. Genome-wide DNA methylome and transcriptome profiling were carried out in these two sublines by Reduced Representation Bisulfite Sequencing and RNA-seq technologies. Cell-based assays were conducted to support the clinical findings. RESULTS: There are distinct DNA methylation and gene expression patterns between the two cell sublines with low- and high-metastasis potentials. Integrated analysis identified 33 methylation-induced genes potentially involved in ovarian cancer metastasis. The DNA methylation patterns of two of them (i.e., SFRP1 and LIPG) were further validated in human specimens, indicating that they were hypermethylated and downregulated in peritoneal metastatic ovarian carcinoma compared to primary ovarian carcinoma. Patients with lower SFRP1 and LIPG expression tend to have a worse prognosis. Functionally, knockdown of SFRP1 and LIPG promoted cell growth and migration, whereas their overexpression resulted in the opposite effects. In particular, knockdown of SFRP1 could phosphorylate GSK3ß and increase ß-catenin expression, leading to deregulated activation of the Wnt/ß-catenin signaling. CONCLUSION: Many systemic and important epigenetic and transcriptomic alterations occur in the progression of ovarian cancer. In particular, epigenetic silencing of SFRP1 and LIPG is a potential driver event in ovarian cancer metastasis. They can be used as prognostic biomarkers and therapeutic targets for ovarian cancer patients.


Assuntos
Neoplasias Ovarianas , beta Catenina , Humanos , Feminino , beta Catenina/genética , Transcriptoma , Neoplasias Ovarianas/genética , Epigenoma , Linhagem Celular Tumoral , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lipase/genética , Lipase/metabolismo
16.
Zhonghua Xin Xue Guan Bing Za Zhi ; 51(7): 716-721, 2023 Jul 24.
Artigo em Chinês | MEDLINE | ID: mdl-37460425

RESUMO

Objective: To identify and analyze 3D architecture of the mutational sites of susceptible genes in a pedigree with familial hypercholesterolemia-like phenotype (FHLP). Methods: This is a case series study. A pedigree with suspected familial hypercholesterolemia was surveyed. The proband admitted in Beijing Anzhen Hospital in April 2019. Whole-exome sequencing was performed to determine the mutational sites of susceptible genes in the proband. Polymerase chain reaction (PCR) sequencing was used to verify the pathogenic variant on proband's relatives. The structural and functional changes of the proteins were analyzed and predicted by Discovery Studio 4.0 and PyMol 2.0. Results: The patients in the pedigree showed abnormal lipid profiles, especially elevated levels of total cholesterol(TC). The genetic screening detected the c.1330C>T SNP in the exon 8 of lipase C (LIPC) gene, this mutation leads to an amino acid substitution from arginine to cysteine at position 444 (Arg444Cys), in the proband and proband's father and brother. In this family, members with this mutation exhibited elevated TC, whereas lipid profile was normal from the proband's mother without this mutation. This finding indicated that LIPC: c.1330C>T mutation might be the mutational sites of susceptible genes. The analysis showed that Arg444Cys predominantly affected the ligand-binding property of the protein, but had a limited impact on catalytic function. Conclusion: LIPC: c.1330C>T is a new mutational site of susceptible genes in this FHLP pedigree.


Assuntos
Hiperlipoproteinemia Tipo II , Lipase , Humanos , Masculino , Hiperlipoproteinemia Tipo II/genética , Lipase/genética , Lipídeos , Mutação , Linhagem , Fenótipo , Proteínas
17.
J Mol Neurosci ; 73(7-8): 598-607, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37470904

RESUMO

Lysosomal acid lipase (LAL) is a necessary enzyme for the hydrolysis of both triglycerides (TGs) and cholesteryl esters (CEs) in the lysosome. Deficiency of this enzyme encoded by the lipase A (LIPA) gene leads to LAL deficiency (LAL-D). A severe disease subtype of LAL-D is known as Wolman disease (WD), present with diarrhea, hepatosplenomegaly, and adrenal calcification. Untreated patients do not survive more than a year. The aim of this study was to assess the clinical and molecular characterizations of WD patients in Egypt. A total of seven patients (from five unrelated Egyptian families) were screened by targeted next-generation sequencing (NGS), and the co-segregation of causative variants was analyzed using Sanger sequencing. Furthermore, multiple in silico analyses were performed to assess the pathogenicity of the candidate variants. Overall, we identified three diseases causing variants harbored in the LIPA gene. One of these variants is a novel missense variant (NM_000235.4: c.1122 T > G; p. His374Gln), which was classified as a likely pathogenic variant. All variants were predicted to be disease causing using in silico analyses. Our findings expand the spectrum of variants involved in WD which may help to investigate phenotype-genotype correlation and assist genetic counseling. To the best of our knowledge, this is the first clinico-genetic study carried out on Egyptian patients affected with WD.


Assuntos
Doença de Wolman , Humanos , Doença de Wolman/tratamento farmacológico , Doença de Wolman/genética , Lipase/genética , Egito , Mutação , Doença de Wolman
18.
Int Microbiol ; 26(4): 1021-1031, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37076723

RESUMO

A Gram-negative, aerobic bacterial strain RR6T was isolated from the sea sand to produce lipase and proposed as a novel species of Halopseudomonas. The optimum growth occurred at 28-37 °C, and the pH was 6.0-8.0. The optimum growth occurred at 3.0 -6.5% (w/v) NaCl. The major cellular fatty acids were C10:0 3OH, C12:0, C16:1 ω7c/16:1 ω6c, 18:1 ω7c and/or 18:1 ω6c, and C16:0. The predominant polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unidentified phospholipid, and unidentified lipids. The genome is 3.93 Mb, and the G + C content is 61.3%. The 16S rRNA gene sequences shared 99.73-99.87% sequence similarity with the closely related type strains of Halopseudomonas. The average nucleotide identity and average amino acid identity of strain RR6T with reference type strains were below 95-96%, and the corresponding in-silico DNA-DNA hybridization values were below 70%. Strain RR6T clustered with Halopseudomonas gallaeciensis V113T and Halopseudomonas pachastrellae CCUG 46540 T in the phylogenetic tree. Further, lipase produced by this bacterium belongs to α/ß hydrolase lipase family and exhibits structural similarity to the lactonizing lipase. Based on the polyphasic analysis, the new isolates RR6T represent a novel species of Halopseudomonas for which Halopseudomonas maritima sp. nov. is proposed. The type strain is RR6T (= NBRC 115418 T = TBRC 15628 T).


Assuntos
Lipase , Areia , Areia/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Lipase/genética , Fosfolipídeos/química , DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA
19.
J Exp Clin Cancer Res ; 42(1): 7, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36604676

RESUMO

BACKGROUND: Triple-Negative Breast Cancer (TNBC) is a subtype of breast cancer that differs from other types of breast cancers in the faster spread and worse outcome. TNBC presented limited treatment options. BET (Bromodomain and extra-terminal domain) proteins are epigenetic readers that control the expression of different oncogenic proteins, and their inhibition (BETi) is considered a promising anti-cancer strategy. Recent evidence demonstrated the involvement of BET proteins in regulation of metabolic processes. METHODS: MDA-MB231 cells treated with JQ1 followed by RNA-sequencing analysis showed altered expression of lipid metabolic genes; among these, we focused on ATGL, a lipase required for efficient mobilization of triglyceride. Different in vitro approaches were performed to validate the RNA-sequencing data (qRT-PCR, immunofluorescence and flow cytometry). NMR (Nuclear Magnetic Resonance) was used to analyze the lipid reprogramming upon treatment. ATGL expression was determined by immunoblot and qRT-PCR, and the impact of ATGL function or protein knockdown, alone and in combination with BETi, was assessed by analyzing cell proliferation, mitochondrial function, and metabolic activity in TNBC and non-TNBC cells culture models. RESULTS: TNBC cells treated with two BETi markedly increased ATGL expression and lipolytic function and decreased intracellular lipid content in a dose and time-dependent manner. The intracellular composition of fatty acids (FAs) after BETi treatment reflected a significant reduction in neutral lipids. The short-chain FA propionate entered directly into the mitochondria mimicking ATGL activity. ATGL KD (knockdown) modulated the levels of SOD1 and CPT1a decreasing ROS and helped to downregulate the expression of mitochondrial ß-oxidation genes in favor of the upregulation of glycolytic markers. The enhanced glycolysis is reflected by the increased of the mitochondrial activity (MTT assay). Finally, we found that after BETi treatment, the FoxO1 protein is upregulated and binds to the PNPLA2 promoter leading to the induction of ATGL. However, FoxO1 only partially prompted the induction of ATGL expression by BETi. CONCLUSIONS: The anti-proliferative effect achieved by BETi is helped by ATGL mediating lipolysis. This study showed that BETi altered the mitochondrial dynamics taking advantage of ATGL function to induce cell cycle arrest and cell death. Schematic representation of BETi mechanism of action on ATGL in TNBC cells. BETi induce the expression of FoxO1 and ATGL, lowering the expression of G0G2, leading to a switch in metabolic status. The induced expression of ATGL leads to increased lipolysis and a decrease in lipid droplet content and bioavailability of neutral lipid. At the same time, the mitochondria are enriched with fatty acids. This cellular status inhibits cell proliferation and increases ROS production and mitochondrial stress. Interfering for ATGL expression, the oxidative phenotypic status mildly reverted to a glycolytic status where neutral lipids are stored into lipid droplets with a consequent reduction of oxidative stress in the mitochondrial.


Assuntos
Aciltransferases , Lipase , Neoplasias de Mama Triplo Negativas , Humanos , Linhagem Celular Tumoral , Ácidos Graxos , Lipase/genética , Lipase/metabolismo , Lipídeos , Proteínas , Espécies Reativas de Oxigênio , Neoplasias de Mama Triplo Negativas/patologia , Aciltransferases/genética , Aciltransferases/metabolismo
20.
J Obstet Gynaecol ; 43(1): 2151353, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36606668

RESUMO

Lipase G, endothelial type (LIPG) is expressed abundantly in tissues with a high metabolic rate and vascularisation. Research on LIPG has focussed on metabolic syndromes. However, the role of LIPG in providing lipid precursors suggests that it might function in the metabolism of carcinoma cells. Analysis in The Cancer Genome Atlas indicated that patients with cervical carcinoma with high LIPG expression had a lower survival prognosis compared with patients with low LIPG expression. The mechanism underlying the effects of LIPG in cervical carcinoma is unclear. The present study aimed to determine the role of LIPG in cervical carcinoma and its mechanism. The results showed that the LIPG expression level was higher in cervical cancer. Downregulation of LIPG expression inhibited cell migration, invasion, proliferation, and the formation of cell colonies, but increased the rate of apoptosis. The Human papillomavirus E6 protein might reduce the expression of miR-148a-3p, relieve the inhibitory effect of miR-148a-3p on LIPG expression, and promote the progression of cervical cancer through the phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B/mechanistic target of rapamycin kinase signalling pathway.IMPACT STATEMENTWhat is already known on this subject? LIPG provides lipid precursors, suggesting that it might function in the metabolism of carcinoma cellsWhat do the results of this study add? LIPG might be regulated by HPV16 E6/miR-148a-3p and promote cervical carcinoma progression via the PI3K/AKT/mTOR signalling pathway.What are the implications of these finding for clinical practice and/or further research? The results indicated that novel treatment and diagnosis strategies for cervical carcinoma could be developed related to LIPG. However, the detailed relationship between LIPG and cervical carcinoma remains to be fully determined.


Assuntos
Lipase , MicroRNAs , Neoplasias do Colo do Útero , Feminino , Humanos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Lipase/genética , Lipase/metabolismo , Lipídeos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA